
lable at ScienceDirect

Atmospheric Environment 106 (2015) 241e251
Contents lists avai
Atmospheric Environment

journal homepage: www.elsevier .com/locate/atmosenv
Source term estimation using air concentration measurements and a
Lagrangian dispersion model e Experiments with pseudo and real
cesium-137 observations from the Fukushima nuclear accident

Tianfeng Chai a, b, *, Roland Draxler a, Ariel Stein a

a NOAA Air Resources Laboratory (ARL), NOAA Center for Weather and Climate Prediction, 5830 University Research Court College Park, MD 20740, USA
b Cooperative Institute for Climate and Satellites, University of Maryland, College Park, MD 20740, USA
h i g h l i g h t s
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a b s t r a c t

A transfer coefficient matrix (TCM) was created in a previous study using a Lagrangian dispersion model
to provide plume predictions under different emission scenarios. The TCM estimates the contribution of
each emission period to all sampling locations and can be used to estimate source terms by adjusting
emission rates to match the model prediction with the measurements. In this paper, the TCM is used to
formulate a cost functional that measures the differences between the model predictions and the actual
air concentration measurements. The cost functional also includes a background term which adds the
differences between a first guess and the updated emission estimates. Uncertainties of the measure-
ments, as well as those for the first guess of source terms are both considered in the cost functional. In
addition, a penalty term is added to create a smooth temporal change in the release rate. The method is
first tested with pseudo observations generated using the Hybrid Single Particle Lagrangian Integrated
Trajectory (HYSPLIT) model at the same location and time as the actual observations. The inverse esti-
mation system is able to accurately recover the release rates and performs better than a direct solution
using singular value decomposition (SVD). It is found that computing ln(c) differences between model
and observations is better than using the original concentration c differences in the cost functional. The
inverse estimation results are not sensitive to artificially introduced observational errors or different first
guesses. To further test the method, daily average cesium-137 air concentration measurements around
the globe from the Fukushima nuclear accident are used to estimate the release of the radionuclide.
Compared with the latest estimates by Katata et al. (2014), the recovered release rates successfully
capture the main temporal variations. When using subsets of the measured data, the inverse estimation
method still manages to identify most of the major events in the temporal profile of the release.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The transport and dispersion of gaseous and particulate pol-
lutants in the atmosphere can be modeled using either Eulerian or
Lagrangian approaches. In the Lagrangian approach, a large number
of trajectories of “particles” starting from a source location are
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tracked in the atmosphere to predict the transport and dispersion
of pollutants. Lagrangian particle dispersion models are frequently
employed to provide plume products associated with emergency
response scenarios. For instance, the National Oceanic and Atmo-
spheric Administration (NOAA) in the United States has been using
the Hybrid Single Particle Lagrangian Integrated Trajectory (HYS-
PLIT) model (Draxler and Hess, 1998) to provide long-range plume
forecasts to World Meteorological Organization (WMO) member
states in North, Central, and South America, and the International
Atomic Energy Agency (IAEA) when requested since 1993 (Draxler
et al., 1993; Rolph et al., 1993).

For dispersion problems with complex emission scenarios,
Draxler and Rolph (2012) developed a procedure to model atmo-
spheric radionuclide air concentrations using a transfer coefficient
matrix (TCM) generated using a Lagrangian dispersion model. In
this procedure, independent simulations are first performed with a
unit emission rate from each source location and pre-defined time
segment. The time varying model predictions at all receptor loca-
tions (or grid points) are tabulated to generate the TCM. The same
TCM can repeatedly be used to generate model predictions with
different release scenarios. In this approach, each set of input pa-
rameters, i.e., a release scenario, is used to compute the deter-
ministic set of predictions at all receptors, subject to model error
and uncertainties.

In many situations the actual emissions may be difficult to
obtain quickly, such as during nuclear accidents, volcanic eruptions,
and wild fires. Inverse modeling approaches are often employed to
utilize observations and numerical models to estimate the emis-
sions. The linearity of the Lagrangian dispersion model is inherent
to the TCM approach. The transfer coefficients in the TCM contain
the sensitivities of the receptors with respect to all emission terms
as calculated by the Lagrangian dispersion model and do not need
to be repeated again for different emission scenarios. If there are
enough measurements, the emission rates can be directly solved
using singular value decomposition (SVD). However, potential
problems (e.g., singularities) may arise when the uncertainty of the
dispersion model and observations are not carefully considered.
Solving the inverse problem under a general variational data
assimilation framework allows many uncertainty parameters and
heterogeneous types of measurements to be formulated into a
single cost functional (e.g., Winiarek et al., 2014). In theory, the
solution that minimizes the cost functional provides the best esti-
mate of the release scenario.

The release of radioactive materials from the Fukushima Daiichi
Nuclear Power plant accident resulting from the earthquake and
tsunami in March 2011 has been estimated using various methods.
Chino et al. (2011) gave a first preliminary estimation of release
amounts of iodine-131 (I-131) and cesium-137 (Cs-137) into the
atmosphere from the accident by coupling environmental moni-
toring data in Japan with dispersion simulations. The temporal
emission variation of the release was later updated by Katata et al.
(2012) and Terada et al. (2012) with additional regional monitoring
data. Katata et al. (2014) provided the latest update of their reverse
and inverse estimation results after adding an oceanic dispersion
model and further refinement of the deposition scheme. The ra-
dionuclides released after the accident were detected atmonitoring
stations worldwide, including those of the International Moni-
toring System (IMS) to support the Comprehensive Nuclear-Test-
Ban Treaty (CTBT) (Auer and Prior, 2014). Sch€oeppner et al.
(2012), Stohl et al. (2012), and Achim et al. (2014) estimated the
source terms using global monitoring data. Among the attempts to
estimate the Fukushima radiation release employing atmospheric
dispersion model and monitoring data, many obtained results
directly based on the simple comparison between model outputs
and measurements (e.g. Chino et al., 2011; Katata et al., 2012;
Terada et al., 2012; Hirao et al., 2013; Kobayashi et al., 2013; Oza
et al., 2013; Katata et al., 2014; Achim et al., 2014), while others
used a more formal inverse modeling approach by introducing a
cost functional and a priori estimate (e.g. Stohl et al., 2012;
Winiarek et al., 2012; Saunier et al., 2013; Winiarek et al., 2014).

The main purpose of this study is to determine whether global
monitoring networks, such as the IMS of CTBT can be used to
quantify temporal variations of emissions from a known source
location, using the Fukushima accident as a case study. The IMS
observations were previously used in source region estimation
(Becker et al., 2007), which is related but different from our
objective here. In the studies to estimate the Fukushima source
terms, both Stohl et al. (2012) and Achim et al. (2014) included
close-in observations at finer temporal resolutions in addition to
the global measurements. Our assumption is that close-in obser-
vations would not generally be available in typical CTBT applica-
tions. Sch€oeppner et al. (2012) used observations from three CTBT
stations and their respective source-receptor sensitivities to obtain
three sets of time-dependent source-terms based on data from
each station separately. By introducing a cost functional, we
consider the observations from many stations simultaneously.
Compared to the previous studies that also introduced a cost
functional and a priori estimate (e.g. Stohl et al., 2012; Winiarek
et al., 2012; Saunier et al., 2013; Winiarek et al., 2014), a more
detailed sensitivity study is provided to validate the assumptions of
our inverse estimation technique.

In this study, the TCM is used to formulate a cost functional that
contains three terms: an observational term calculating the dif-
ferences between the model predictions and the actual air con-
centration measurements; a background term measuring the
deviation of the solution from the first guess; and a smoothness
term penalizing abrupt changes in the temporal profile of the
release rate. The best estimate of the release rates is found by
minimizing the cost functional using an optimization routine. Un-
certainties of the measurements, as well as those for the first guess
of source terms are formally considered in the cost functional
formulation.

The paper is organized as follows. Section 2 describes the
methodology of the inverse modeling, as well as a brief introduc-
tion of the HYSPLIT model and the TCM approach. Section 3 pre-
sents test cases with pseudo observations generated using the
HYSPLIT model. Estimates of the Cs-137 release using actual air
concentration measurements from the Fukushima nuclear accident
are presented and discussed in Section 4. A summary is given in
Section 5.

2. Methodology

2.1. HYSPLIT model and configuration

In this study, the transport and dispersion of the radionuclide
Cs-137 are modeled using a Lagrangian approach with the HYSPLIT
model. In HYSPLIT, a large number of particles, which are consid-
ered computational “point” entities that may be particles or gases,
are released at the source location and passively follow the wind. A
random component is added to themean advection velocity in each
of the three-dimensional wind component directions to simulate
the dispersion of pollutants. The vertical and horizontal turbulence
is computed from the local stability estimated from the wind and
temperature profiles. Air concentrations, or dispersion factors in
this case, are computed by summing each particle's mass as it
passes over a concentration grid cell and dividing the result by the
cell's volume. A detailed description of the computational aspects
of the model can be found in Draxler and Hess (1997, 1998).

All calculations used the 0.5-degree horizontal resolution
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meteorological data from NOAA's Global Data Assimilation System
(GDAS) (Kleist et al., 2009), consisting of a series of 0 to þ6 h
forecasts available on 56 native model sigma levels with meteo-
rological fields available every three hours. In the HYSPLIT simu-
lation, Cs-137 is treated as a particle, with a small dry deposition
velocity of 0.001 m/s. The original HYSPLIT calculations (Draxler
and Rolph, 2012) for the Fukushima accident used a particle
release rate of only 5000 per hour. In subsequent calculations, the
particle release rate was increased to 20,000 per hour. Further
increasing the release rate to 100,000 per hour has little effect on
either the HYSPLIT model simulation or the inverse emission esti-
mates. In all previous simulations, the wet deposition was divided
into within- and below-cloud scavenging. The within-cloud
scheme was based upon an empirically derived scavenging ratio
based on the ratio of pollutant concentration measurements in rain
to air, while the below-cloud process was parameterized through a
decay process defined by a time constant. The revised scavenging
scheme used here is a simplified version of the previous scheme
using the same time constant decay process for both within- and
below-cloud removal. The numerical formulation is the same as in
the NAME model (Maryon et al., 1999; Sportisse, 2007), where
B ¼ AR0.79 and the base scavenging A ¼ 8 � 10�5 s�1 for particulate
Cesium, with the rainfall rate R given in mm h�1. Radioactive decay
is applied in the post-processing step, when converting the TCMs to
air concentration, but it has little effect on the Cs-137 results
because of its long half-life (~30.17 years). The air concentration
grid is global at 1-degree horizontal resolution with a vertical
extent of 500 m. The relatively coarse concentration grid restricted
the application of the TCM to more distant samplers rather than
any close-in measurements, but permitted the use of fewer parti-
cles for each simulation.

2.2. Cs-137 sampling data

In this paper, the Cs-137 air concentration sampling data are
derived from three public sources: the U.S. (www.usandc.gov/
radionuclide.html) and Canadian (www.hc-sc.gc.ca/hc-ps/ed-ud/
respond/nuclea/data-donnees-eng.php) CTBT IMS, various Euro-
pean national networks (Masson et al., 2011), and the U.S. EPA
(www.epa.gov/japan2011/rert/radnet-sampling-data.html). Here-
after they are referred as CTBT, EURO, and EPAR data. The extra
measurements used by Draxler and Rolph (2012) are denoted as
“EXTR” and are included in the study as well. Sampling data with
higher temporal resolutions are converted into 24-h average con-
centrations in the paper to follow the CTBT sampling protocols
(Becker et al., 2007). Table 1 lists the number of monitoring stations
and total number of samples from each data source. The distribu-
tion of the measuring stations are shown in Fig. 1. Europe was well
monitored by a densely located network, but it took seven days for
the polluted air to reach the area before it was detected (Masson
Table 1
List of Cs-137 air concentration sampling data. Numbers in “()” show the counts of
stations and samples before certain data are excluded. Four observation records at
Dutch Harbor, Alaska site in the EPAR and seven records at Dublin/Belfield site in the
EURO data are excluded because they are already included in the EXTR data sets. The
other excluded samples, four from CTBT, five from EURO (including a lone sample
data point from Roma), and two from EXTR, are not affected by any of the releases in
the current HYSPLIT simulation.

Data source Number of monitoring stations Count of total samples

CTBT 14 417 (421)
EPAR 19 (20) 35 (39)
EURO 78 (80) 785 (797)
EXTR 4 59 (61)
Total 115 (118) 1296 (1318)
et al., 2011). All the monitoring stations listed here are far away
from the source at the Fukushima Daiichi nuclear power plant.
When estimating the source strength from measurements, local
observations dominated the results. Our intent is to examine
whether a global monitoring network alone can be used to quantify
the emissions.
2.3. Transfer coefficient matrix (TCM)

The transfer coefficients in the TCM are essentially air concen-
trations resulting from dispersion computation using a unit emis-
sion rate. For this Fukushima case study, the time period from 18Z
on March 11, 2011 to 12Z on April 5, 2011 is divided into 99
continuous segments of six hours. An independent simulation is
then conducted for each segment, in which an emissions rate of 1
unit/h is utilized only for the designated 6-h segment, with zero
emissions at all other times. All 99 independent simulations
continue through 20 April, 2011 to cover the sampling time period
for the last measurement considered in this study. For each simu-
lation, three-dimensional (3-D) 6-h average concentration fields
are output at 6-h intervals. The transfer coefficients are thus ob-
tained in the following form as described in Draxler and Rolph
(2012).

TCMijk (1)

where i indicates the release segment, j denotes the sampling time
period, and k is the grid index.

Model concentration chjk at sampling time “j” and grid point “k”
is calculated as

chjk ¼
X
i

qi$D$TCMijk; (2)

where qi is the emissions rate (assumed constant) during the ith 6-
h release segment. The superscript “h” denotes predictions from
HYSPLIT model. Later in text the observed concentrations are given
the superscript “o” to differentiate between model predictions and
observations. D is the radioactive decay factor. The sum is taken
over all release time periods. To reconstruct model-calculated air
concentrations, temporal and spatial interpolation may be needed.
In the current study, the grid point covering the measurement site
is directly usedwithout spatial interpolation. For the 24-h sampling
data, the average of four chjk 6-h concentrations are taken as the
model counterpart. For simplicity in notation, the sampling time “j”
and the spatial location “k” are combined into one index “m” to
represent an independent sampling data point, analogous to our
use of a single index “k” to denote a grid point in a 3-D space. That
is,

chm ¼
X
i

qi$Him; (3)

where Him is D$TCMijk with additional temporal and spatial inter-
polation considered when necessary. Fig. 2 illustrates the average
Him values at the 115 stations and with respect to the 99 release
segments.
2.4. Singular value decomposition (SVD) approach

In the singular value decomposition (SVD) approach, a matrix
pseudo-inverse obtained using its singular values and associated
singular vectors is used to directly construct the solution of a over-
determined linear system. When all M measurements are consid-
ered at the same time, the model counterparts (ch1;/; chM)T can be

http://www.usandc.gov/radionuclide.html
http://www.usandc.gov/radionuclide.html
http://www.hc-sc.gc.ca/hc-ps/ed-ud/respond/nuclea/data-donnees-eng.php
http://www.hc-sc.gc.ca/hc-ps/ed-ud/respond/nuclea/data-donnees-eng.php
http://www.epa.gov/japan2011/rert/radnet-sampling-data.html


Fig. 1. Distribution of Cs-137 monitoring stations.

Fig. 2. Average Him values at 117 stations and 99 release segments. Station indices for each data sets are, CTBT: 1e14, EPAR: 15e33, EURO: 34e111, EXTR: 112e115. Blank spots
indicate zero Him values for all measurements at the station, corresponding to the release segment “i”. Units of Him are hr/m3.
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written as

0
BB@

ch1
ch2
«
chM

1
CCA ¼

0
BB@

H1;1 H1;2 / H1;N
H2;1 H2;2 / H2;N
« « 1 «

HM;1 HM;2 / HM;N

1
CCA
0
BB@

q1
q2
«
qN

1
CCA (4)

where N is the number of release segments. Assuming that the
dispersion model is accurate enough, having enough independent
measurements (M[N) allows the emission rates be directly solved
with a SVD solver. When there are less than N independent
measurements, the problem becomes under-determined. It will be
shown later that the straightforward SVD approach is extremely
sensitive to observational error even when the problem is well-
defined with (M[N).
2.5. Formulation of the inverse problem

In general, an inverse problem can be naturally formulated
under a variational data assimilation framework. The solution is
found by minimizing a cost functional that integrates the differ-
ences between model predictions and observations, deviations of



Fig. 4. Scatter plot of the simulated Cs-137 and observations. Cs-137 release estimates
by Katata et al. (2014) shown in Fig. 3 are used in the HYSPLIT model simulation.
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the final solution from the first guess (a priori), as well as other
relevant informationwritten into penalty terms (Daley, 1991). Such
formulation allows heterogeneous types of measurements to be
considered simultaneously and the uncertainty to be treated in a
statistically rigorous way. For the current problem, the cost func-
tional F is defined as,

F ¼ 1
2

X
i¼1

N
�
qi � qbi

�2
s2i

þ 1
2

X
m¼1

M
�
chm � com

�2
ε
2
m

þ csm
2

$
X
i¼2

N�1
2
4
�
qi�1 � qbi�1

�
� 2$

�
qi � qbi

�
þ
�
qiþ1 � qbiþ1

�
qc

3
5
2

(5)

where N ¼ 99, and M ¼ 1296 for the current setup when all Cs-137
measurements listed in Table 1 are used. The control vector
[q1,/,qN] describes the release scenario and it will be solved
through the minimization of the cost functional. The first guess
[qb1;/; qbN] of the control vector is often called the background es-
timate in data assimilation. We assume the uncertainties of the
release at each segment are independent of each other so that only
the diagonal term of the typical background error variance s2i ap-
pears in Equation (5). The observational errors are also assumed to
be uncorrelated. ε

2
m are the variances of the observations and

representative errors can also contribute to this term. Because it is
difficult to verify whether the temporal changes of Cs-137 releases
are realistic or not, a smoothness penalty term is added tominimize
abrupt changes of qi. This penalty term also helps to make the
modified minimization problem better conditioned (Lin et al.,
2002). csm is a coefficient used to adjust the smoothness of the
final solution. It is set to zero for all the twin experiments discussed
in the next section. qc is a scale constant, given as qc ¼ 1012 Bq/h in
the following applications. A large-scale bound-constrained
limited-memory quasi-Newton code, L-BFGS-B (Zhu et al., 1997) is
used to minimize the cost functional F defined in Equation (5).

3. Twin experiments

Twin experiments in which pseudo-observations are generated
using the same model as for the inverse calculation are first con-
ducted to answer some basic questions on the source estimation
problem. For the current application, a pseudo-observation vector
Fig. 3. Temporal variations of the Cs-137 releases. “Katata” estimates at 6-h segments are
segments are a posteriori results by Stohl et al. (2012).
cp is obtained using Equation (6) where the previously computed H
replaced the need to re-run the HYSPLIT model.

cp ¼ H$qþ ε (6)

In Equation (6), “p” denotes pseudo-observations. The pseudo-
observations are generated at the same location and time as the
real observations listed in Table 1. All 1296 pseudo-observations are
used in the following twin experiments. The latest estimates of Cs-
137 releases provided by Katata et al. (2014) are used for q. Fig. 3
shows the Katata et al. emission estimates, as well as those by
Stohl et al. (2012). ε is a vector added to simulate the observational
errors calculated as,

ε
p
m ¼ �

f pm � cpm þ apm
�� rm; m ¼ 1;/;M; (7)

where rm is a random number drawn from a normal distribution
with zero mean and unit variance applied to the mth pseudo-
converted from the latest estimates by Katata et al. (2014). “Stohl” estimates at 3-h
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observation. The magnitude of the variance is composed of a frac-
tional component f pm � cpm and an additive part apm. For the EURO Cs-
137 samples, the median of fractional errors for 671 records is 10%
and 0.003 mBq/m3 is the median of 23 absolute errors provided for
the other records.
3.1. Control and metric variables

To minimize the cost functional defined in Equation (5), the
control variables can be changed to [ln(q1),/,ln(qN)] so that the
solution belongs to ℝN instead of ℝN

�0. On the other hand, when
comparing model results with observations, ðchm � comÞ in Equation
(5) can be replaced with lnðchmÞ � lnðcomÞ. In fact, the model simu-
lation errors are found to be close to a log-normal distribution.
Adding the logarithmic operation over the concentration helps
satisfy the underlying assumption of the normal distributions for
the differences between model and observation in variational data
assimilation. In addition, Figs. 3 and 4 display wide ranges of Cs-137
release rates and air concentration measurements. The logarithmic
operation of a variable with large ranges will also improve the
conditioning of the minimization problem.

When [ln(q1),/,ln(qN)] is taken as the control vector, switching
between q and ln(q) is only needed right before and after calling
the L-BFGS-B routine. The gradient vector elements can be calcu-
lated using the following formula,

vF
vlnðqiÞ

¼ vF
vqi

$

�
vlnðqiÞ
vqi

��1

¼ qi$
vF
vqi

; i ¼ 1;/;N: (8)

If ln(c) is used as the metric variable, i.e., lnðchmÞ � lnðcomÞ is used
to calculate the differences between model and observations, εlnðcÞm
can be simply calculated from ε

c
m as

ε
lnðcÞ
m ¼ f cm þ acm

cm
; (9)

where f cm and acm denote the fractional and additive parameters
used to calculate the measurement errors in its original concen-
tration form (εcm).

Table 2 lists the test cases with different arrangements of control
and metric variables. Noise is not added to the pseudo observations
in cases T01-04 to avoid the complication of sensitivity to obser-
vational errors. When solving the minimization problem, the un-
certainties of the observations are assumed to be small:
ε
c
m ¼ 0:001� cpm þ 3� 10�5mBq=m3, i.e., 1% of its typical values
found for the EURO data. A constant first guess emission rate of
Table 2
List of the twin experiments, i.e., inverse cases using pseudo Cs-137 observations. x is
the control variable to be adjusted. y is the metric variable used to calculate the
differences between model and observations. f pm and apm are the fractional and ad-
ditive constants used in Equation (7) for the 1296 pseudo-observations.
εm ¼ f cm � cm þ acm and si ¼ f qi � qi þ aqi represent uncertainties of the observa-
tions and the a priori releases, respectively. qb is the first guess of the control vari-
able. qmin is the lower bound of the control variable for the L-BFGS-B routine. Units
for concentrations and emission/release rates are mBq/m3 and Bq/h, respectively.

Case x y f pm apm f cm acm f qi aqi qb qmin

T01 q c 0 0 0.001 10�5 105 109 1013 2$1011

T02 q ln(c) 0 0 0.001 10�5 105 109 1013 2$1011

T03 ln(q) c 0 0 0.001 10�5 105 109 1013 None
T04 ln(q) ln(c) 0 0 0.001 10�5 105 109 1013 None
T05 ln(q) ln(c) 0.05 0.003 0.10 0.003 103 1011 1013 2$1011

T06 ln(q) ln(c) 0.10 0.003 0.10 0.003 103 1011 1013 2$1011

T07 ln(q) ln(c) 0.20 0.003 0.10 0.003 103 1011 1013 2$1011

T08 ln(q) ln(c) 0.10 0.003 0.10 0.003 103 1011 1012 2$1011

T09 ln(q) ln(c) 0.10 0.003 0.10 0.003 103 1011 1014 2$1011
1013 Bq/hr throughout the release period is given with large un-
certainties of si ¼ 105 � 1013 þ 109z1018Bq=hr. A constraint of
q� 1011 is given to the L-BFGS-B routine as the lower bounds when
q is chosen as the control variable. No bounds are needed when
ln(q) is taken as the control variable. An optimization solution is
considered found when the cost functional is reduced to be less
than 10�6 of its original value or the cost functional change be-
tween two iterations is smaller than 10�13. The maximum iteration
number for L-BFGS-B is set as 500 considering the fact that there is
no need to run the dispersion model and the small cost to compute
the air concentration with any adjusted release [q1,/,qN].

With pseudo-observations generated from a known release
scenario for the identical twin experiments, it is easy to evaluate
both the release solution and its corresponding Cs-137 concentra-
tion predictions. Table 3 shows mean absolute error (MAE), root-
mean-square error (RMSE), mean relative error (MRE), and corre-
lation coefficient (R) for both Cs-137 concentrations and release
rates. Equation (10) shows MRE formulas, in which qt denotes the
“true” release estimates which are used to generate the pseudo-
observations.

MREc ¼ 1
M

X
m¼1

M cm � cpm
cpm

MREq ¼ 1
N

X
i¼1

N qi � qti
qti

(10)

The Cs-137 pseudo-observations are nearly perfectly recon-
structed for cases T01-04, with a correlation of R ¼ 1.000 between
the observations and the final model predictions. The MRE for the
Cs-137 concentrations ranges from 0.001 for cases T02 and T04 and
theworst 0.043, for case T03, but still a small value. Fig. 5 shows the
recovered Cs-137 release rates and the Katata release estimates.
Cases T04 and T02 are very close to the exact solution. The release
rates for the early days are well recovered for all the cases, but the
results after March 21 are not as good for cases T01 and T03. This
can be explained by the relatively lower sensitivities of the obser-
vations with respect to the releases for the later days as shown in
Fig. 2. The better performances of cases T02 and T04 which
compare the differences of ln(c) than cases T01 and T03 which use
the concentrations in Equation (5), suggests that choosing ln(c) as
the metric variable is beneficial when the observations of the
original variable shows a wide range. Similarly, when the control
variable varies drastically, it is helpful to change the control variable
as well. The statistics shown in Table 3 indicates that case T04
performs slightly better than case T02. Hereafter, we choose ln(q)
and ln(c) as control and metric variables respectively for the sub-
sequent tests.

As discussed earlier, the inverse problem can be directly solved
via the SVD approach. Using the same pseudo-observations for
cases T01-04, the SVD results are also presented in Table 3 and
Fig. 5. Note that there are 22 negative release rates present in the
results from the standard SVD routine using double precision (Press
et al., 1986). The negative release rates are replaced with zero
emissions when calculating the model results. Table 3 indicates
that the SVD approach generates reasonable results, but worse than
most of the cases using the minimization inverse modeling
approach. The SVD results are comparable to those from case T03
which is the worst among T01-04. The recovered releases after
March 21 fail to show the temporal variation and almost totally
miss the peak on March 30. However, the SVD approach performs
quite well for the releases before March 21 and captures the basic
patterns albeit having large errors at certain points, for instance, on
March 15.



Table 3
Evaluation statistics of Cs-137 concentrations and recovered releases from the twin experiments. MAE: mean absolute error; RMSE: root-mean-square error; MRE: mean
relative error; R: linear correlation coefficient. Units of MAE and RMSE: mBq/m3 for concentrations, Bq/h for releases.

Case Cs-137 concentration Cs-137 release

MAE RMSE MRE R MAE RMSE MRE R

T01 0.001 0.001 0.008 1.000 0.90 � 1012 1.88 � 1012 0.229 0.998
T02 0.000 0.001 0.001 1.000 0.11 � 1012 0.61 � 1012 0.012 1.000
T03 0.002 0.004 0.043 1.000 3.32 � 1012 7.66 � 1012 0.740 0.965
T04 0.000 0.002 0.001 1.000 0.03 � 1012 0.08 � 1012 0.011 1.000
SVD 0.002 0.004 0.035 1.000 3.57 � 1012 9.06 � 1012 0.588 0.952
T05 0.027 0.242 0.194 0.995 5.21 � 1012 9.10 � 1012 0.720 0.960
S05 0.021 0.091 0.197 0.998 14.37 � 1012 26.73 � 1012 2.818 0.699
T06 0.038 0.334 0.310 0.985 5.58 � 1012 9.19 � 1012 0.792 0.957
S06 0.051 0.176 0.435 0.993 26.35 � 1012 50.75 � 1012 5.386 0.437
T07 0.055 0.433 0.411 0.952 6.67 � 1012 12.75 � 1012 0.887 0.907
S07 0.141 0.640 1.020 0.985 50.83 � 1012 97.82 � 1012 10.720 0.233
T08 0.038 0.331 0.309 0.985 5.68 � 1012 9.43 � 1012 0.800 0.954
T09 0.038 0.334 0.310 0.985 5.58 � 1012 9.18 � 1012 0.791 0.957

Fig. 5. Cs-137 release estimates from twin experiments T01-04 and solution using
singular value decomposition (SVD). Cs-137 release estimates by Katata et al. (2014)
are shown for comparison.
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3.2. Observation uncertainty

To simulate observational errors, random noise generated using
Equation (7) is added to the previous pseudo-observations for Cases
T05-07. As listed in Table 2, the fractional components of the errors
(f pm in Equation (7)) are given as 5%, 10%, and 20% for T05, T06, and
T07, respectively. In all three cases, the additive component of the
uncertainty (apm in Equation (7)) is assumed constant at 0.003 mBq/
m3. The parameters for observation and a priori release un-
certainties provided to solve the inverse problem are also modified
to be realistic, as shown in Table 2. Note that the observational
uncertainty of 10% is kept constant for Cases T05-07 as estimating
such parameters is difficult and is primarily determined by the
sampling network characteristics.

For the three sets of pseudo-observations, the SVD method is
also applied and the evaluation statistics of the results are listed in
Table 3. The cases are denoted with “S” followed with the same
number as the regular twin tests using the same pseudo-
observation set. Because the SVD method only tries to match the
observations without any consideration of whether the release
solutions are reasonable or not, negative release rates are found for
all three cases. The negative release rates are reset to zero when
evaluating the concentration statistics. It is not surprising to see
good concentration statistics for the SVD cases. However, the
release rate results by the SVD method are much worse than cases
T05-07. The correlation coefficients for T05-07 are all greater than
0.900, while those for S05-07 are less than 0.700. The MAEs and
RMSEs of the releases for cases S05-07 are more than twice of those
for cases T05-07. Among the twin tests T05-07, the results get
slightly worse as greater noise is added to the pseudo-observations.
For case T07, the correlation coefficient between the resolved
release rates and the true solution is 0.907, still a reasonably good
result. It should be noted that the worse results using the SVD
approach is caused by the lack of regularization than the technique
alone, which basically gives a least squares solution to an over-
determined problem.
3.3. First guess

The a priori release rates qbi in Equation (5) are required to make
the inverse problem well defined. However, it is often difficult to
obtain a good a priori estimate. In tests T01-07, the constant a priori
release rate of 1013 Bq/hr is rather arbitrary. Thus, a large uncer-
tainty factor has to be associated with the first guess in order to
reduce the sensitivity of the final solution to the a priori. In tests
T01-07 f qi ¼ 1000 signifies a wide range of the release rates. Cases
T08 and T09 test the robustness of the eventual release estimates
by changing the a priori release rates to 1012 Bq/hr, and 1014 Bq/hr,
respectively. The pseudo-observations are identical to those
assimilated in case T06, where Gaussian-distributed random noise
with standard deviation of 0:1� cpm þ 0:003mBq=m3 is added.
Except for qbi , the other parameters used in tests T08 and T09 are
identical to those in case T06. The final solutions of the three cases
with different first guesses are almost indistinguishable as indi-
cated by their similar evaluation statistics listed in Table 3.
4. Tests using real observations

The numerical twin experiment tests presented in Section 3
demonstrate that the current inverse algorithm is capable of esti-
mating the release rates from a known source location using air
concentration observations. The temporal variations can be
resolved with reasonable robustness when pseudo-observations
are perturbed with random errors of different magnitudes.
Furthermore, the results are not sensitive to the first guess of those
releases. However, the above conclusion is based on the



Table 4
List of inverse cases using actual Cs-137 measurements. csm is the smoothness co-
efficient in Equation (5). ln(q) and ln(c) are chosen as control and measuring vari-
ables. εm ¼ 10%� cm þ 0:003mBq=m3;m ¼ 1;/M; qbi ¼ 1013Bq=hr; i ¼ 1;/;N;
si ¼ 1016 þ 1011z1016Bq=hr; i ¼ 1;/;N.

Case Assimilated observations csm Final F sms=F total

R01 All, M ¼ 1296 0 0
R02 All, M ¼ 1296 1.0 0.021
R03 All, M ¼ 1296 0.1 0.020
R04 CTBT, M ¼ 417 1.0 0.012
R05 EPAR, M ¼ 35 1.0 0.053
R06 EURO, M ¼ 785 1.0 0.030
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assumption of a “perfect” model because the pseudo-observations
are generated by the same model with identical physical parame-
ters and the exact same meteorological fields.

Using the HYSPLIT model with the configuration described in
Section 2.1 and Cs-137 releases estimates by Katata et al. (2014), the
model results are shown in Fig. 4 as a scatter plot compared with
the Cs-137 measurements. Fig. 6 shows the ratio of model versus
observations as function of the sampling date. The ratios have a
range of 0.001e1000, but mostly fall between 0.1 and 10. Note that
the EPAR data used in this paper do not include observations in
April and late March, which are currently available.
R07 EXTR, M ¼ 59 1.0 0.049
4.1. Smoothness

Case R01 is conducted by directly replacing the pseudo-
observations with the actual measurements listed in Table 1 and
keeping all the other parameters used in the twin experiment test
T06, as listed in Table 4. The maximum iteration number for L-
BFGS-B is increased to 10,000 to ensure the stringent minimization
criteria are met before reaching the maximum iteration number.
The estimates of high release rates (qmin � 1012 Bq/h) before March
21 agree reasonably well with Katata et al. (2014) results, as shown
in Fig. 7(a). However, the release estimates display quite abrupt
changes from one 6-h segment to the next. Many segments show
release rates reaching the prescribed lower limit of
qmin ¼ 2 � 1011 Bq/h. While dramatic changes are possible for
events such as explosions and deliberate venting, in this application
the extreme temporal variations caused by the release rates
reaching the prescribed lower limit are mostly spurious. Appar-
ently, the algorithm tries to lower release rates at certain segments
in order to correct the overestimation of some samples shown in
Fig. 6. Such overestimation may be caused by the uncertainties of
the meteorological inputs and parameterization of the deposition
processes.

To enforce the smoothness penalty terms, we set the smooth-
ness coefficient csm in Equation 5 to 1.0 and 0.1 in cases R02 and
R03, respectively. Fig. 7(b) shows that the smoothness penalty
applied in cases R02 and R03 effectively removed the sudden
changes in the release rates. With less spurious temporal variations
in the releases, both cases R02 and R03 appear to smooth out the
Katata et al. (2014) results at 6-h resolution. Centered 24-h and 96-
Fig. 6. Ratio of simulated Cs-137 to measurements as a function of observation time
using the Cs-137 release estimates by Katata et al. (2014), shown in Fig. 3.
h running averages are calculated for the Katata et al. (2014) results
and are shown in Fig. 7(b). A nearly perfect match is found between
R02 and 96-h Katata et al. results from March 16 to March 21. Re-
sults of case R03 mostly resemble 24-h Katata et al. results.
Fig. 7. Cs-137 release estimates from tests using actual measurements without (a) and
with (b) smoothness constraints. Cs-137 release estimates by Katata et al. (2014) are
also shown for comparison. Katata-24hr and Katata-96hr estimates are centered
running averages based on the 6-hr results.
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Similar to the twin experiments, the release rates after March 21
are difficult to estimate. All three cases fail to reproduce the peak on
March 30e31. The high release rates are possibly due to the core re-
melting at Unit 2 on March 30 addressed by Tanabe (2012). Using a
high resolution local-scale dispersion model, Katata et al. (2014)
showed that the plume turned clockwise from the east to the
southwest of the power plant. Wet deposition also occurred over
Tochigi and Ibaraki prefectures in the afternoon of March 30 before
the plume headed to the ocean. It is difficult for the remote stations
to capture the signature of this event. Both R02 and R03 recover a
peak release rate between March 25 and 26. The peak coincides
with a plateau from March 25 to March 26 in the Katata et al. es-
timates. The 24-h running averages of their estimates show the
peak release at about the same time as what R02 and R03 recover,
while 96-h results only give a hint of it a day earlier. Katata et al.
(2014) shows another event on March 22. It may reflect the
possible core fuel re-melt at Units 3 and 1 on March 21 and March
22e23 speculated by Tanabe (2012). Cases R02-03 results are un-
able to show this event, but neither are the 96-h Katata et al. re-
sults. Clearly, the 96-h running averages smooth out the temporal
variations at 6-h resolution and combine several short events into
major events visible at lower temporal resolution. Similarly, having
smoothness terms in R02 and R03 helps to focus on the major
events which are hopeful of being resolved with the current setup
using the 24-h observations and a global dispersion model.

Table 5 shows that the correlation between the recovered re-
leases and those by Katata et al. (2014) improved from R¼ 0.444 for
R01 to 0.671 and 0.631 for cases R02 and R03, respectively.
Assuming the Katata et al. (2014) estimates as “true” solutions, the
MAEs and RMSEs remain large, and the RMEs are close to 100%. The
same statistics are calculated for Stohl et al. (2012) estimates shown
in Fig. 3. A similar correlation coefficient is found, with R ¼ 0.512.
However, their results have much larger MAE, RMSE, and RME
values, withMAE¼ 59.6� 1012 Bq/h, RMSE¼ 145.3� 1012 Bq/h, and
MRE ¼ 3.51, due to their higher release rates compared to the
Katata et al. estimates. The statistics for the Cs-137 concentrations
are comparable for cases R01-03, with high MAEs and RMSEs, and
low correlation coefficients.

Because we choose ln(c) as metric variables, it might be
appropriate to calculate the correlation coefficients based on the
ln(c) values for both observation and model results. Such ln(c)-
based correlation coefficients Rln(c) are also listed in Table 5. Rln(c) for
cases R01-03 are 0.518, 0.405, and 0.425, respectively. They are
better than their corresponding concentration-based correlation
coefficients Rc, which are 0.327, 0.239, and 0.254. Fig. 8 shows the
comparison between the Cs-137 observations and model pre-
dictions using the recovered release rates from case R01 and R02.
Because the Cs-137 concentrations are plotted on a logarithmic
scale, the apparent linear relationship between observations and
model results actually reflect their ln(c)-based correlations.
Table 5
Evaluation statistics of Cs-137 concentrations and recovered releases, q, for cases using ac
(2014) estimates as the “true” solutions. For cases R04-06, the Cs-137 concentration stat
error; RMSE: root-mean-square error; MRE: mean relative error; R: linear correlation co

Case Cs-137 concentration

MAE RMSE MRE Rc R

R01 0.158 0.591 3.508 0.327 0
R02 0.183 0.882 4.288 0.239 0
R03 0.182 0.824 3.770 0.254 0
R04 0.293 1.110 3.505 0.235 0
R05 0.853 1.351 11.305 0.053 0
R06 0.067 0.129 4.460 0.095 0
R07 0.192 0.649 1.179 0.543 0
Correspondingly, observations and simulated Cs-137 concentra-
tions using Katata et al. (2014), shown in Fig. 4 on a logarithmic
scale scatter plot as well, have a ln(c)-based correlation of
Rln(c) ¼ 0.376 and a concentration-based correlation coefficient
Rc ¼ 0.255. In alleviating the original extreme over- or under-
estimation for some samples, the release rates are adjusted to
have improved agreements between the measurements and sim-
ulations when measured by Rln(c).
4.2. Observation availability

Without the inherent model uncertainties associated with the
long range transport and deposition, accurate local and regional
measurements close to the source are the preferred data for the
inverse modeling. However, these data are not always available, or
at least not in a timely matter, while some global networks, such as
air concentrations from the IMS of CTBT provide reliable and near-
real-time observations. In this section, we will test whether using
only a subset of the observations still permits the quantification of
temporal variations of emissions from a known source location.

Each group of data listed in Table 1, i.e., CTBT, EPAR, EURO, and
EXTR, are assimilated into the inverse modeling system separately
in four cases, R04-07. The description of the cases are listed in
Table 4. Except for the assimilated data, cases R05-07 are otherwise
same as R02. To ensure that the smoothness termwill not dominate
the cost function, the final F sms=F total values are also listed in
Table 4. They have a range of 0.012e0.053 for cases R02-07.

Fig. 9 shows that R04, R06, and R07 all have the highest peak
release value on March 18, similar to those estimated by R02. With
the most observations assimilated, the release estimates of Case
R06 using the EURO data nearly have a perfect match with the 96-h
Katata et al. results fromMarch 16 to March 23. Its overall statistics
for the release rates are similar to case R02 that assimilates all
observations, with MRE ¼ 1.91 and a correlation coefficient
R ¼ 0.671, as listed in Table 5. The release rate statistics are only
slightly worse for case R07, with MRE ¼ 2.09 and a correlation
coefficient R ¼ 0.668. Fig. 9 shows that the estimated emissions of
R07 agreewell with the 96-h Katata et al. results, although the peak
value onMarch 18 is lower. Case R04 with CTBT data has similar Cs-
137 release estimates as R07 does until March 21, when it starts to
deviate from the Katata et al. results. Table 5 shows that its release
rate MRE ¼ 4.69, which is more than twice of those for cases R06
and R07. The release correlation coefficient is also much lower at
R ¼ 0.464. Compared to R04, the relatively better release estimates
of case R07 are probably due to the fact that the model predictions
have less biases on the EXTR data when using the Katata et al.
(2014) release estimates, shown in Figs. 4 and 6.

Among cases R04-07, case R05 that assimilates EPAR data has
the worst performance in estimating the emission rates. It is
because the current EPAR data do not have April observations
tual Cs-137 measurements. The statistics for q are obtained by assuming Katata et al.
istics calculation only includes the measurements assimilated. MAE: mean absolute
efficient. Units of MAE and RMSE: mBq/m3 for concentrations, Bq/h for releases.

Cs-137 release

ln(c) MAE RMSE MRE R

.518 25.7$1012 55.0$1012 2.96 0.444

.405 12.4$1012 22.0$1012 1.96 0.674

.425 13.9$1012 24.7$1012 1.77 0.631

.562 17.5$1012 26.1$1012 4.69 0.464

.150 26.5$1012 35.0$1012 11.35 0.231

.189 12.4$1012 22.3$1012 1.91 0.671

.449 13.1$1012 23.1$1012 2.09 0.668



Fig. 8. Scatter plots of Cs-137 observations and model predictions using recovered release rates from case R01 (left) and R02 (right).

Fig. 9. Cs-137 release estimates from tests using the CTBT (R04), EPAR(R05), EURO
(R06), and EXTR (R07) measurements. Cs-137 releases estimates by Katata et al. (2014)
are also shown for comparison. Katata-96hr estimates are centered running averages
based on the 6-hr results.
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included. This makes it impossible to determine the release rates
for most of the 99 6-hr segments, demonstrated by the limited
extent of average Him in time shown in Fig. 2.
5. Summary and discussion

An inverse emission estimation system based on a transfer co-
efficient matrix (TCM) created using the HYSPLIT Lagrangian
dispersion model and a cost functional that measures the differ-
ences between the model predictions and the actual air concen-
tration measurements is developed. The system is first tested with
identical twin experiments, in which pseudo observations are
generated with the same model used to estimate the transfer co-
efficients. With the pseudo observations generated at the same
location and time as the actual Cs-137 observations to be assimi-
lated later, the system is able to accurately recover the release rates
and obtain better release estimates than the use of the singular
value decomposition (SVD) method. It is found that using ln(c)
differences between model and observations in the cost functional
achieves better results than using the original air concentration c
differences. Using twin experiments with added noise to simulate
the observational errors, the inverse estimation results are found to
be robust and not overly sensitive to the first guess of the release.

When the actual cesium-137 air concentration measurements
after the Fukushima nuclear accident are used to estimate the
release of the radionuclide, a penalty term is added in the cost
functional to create smooth temporal changes. While the temporal
variations of the release rates at 6-h segments cannot be fully
retrieved using 24-h observations, the features at larger time scales
are well recovered. In tests where only some subsets of the avail-
able measurement data are assimilated, the system still manages to
get main events identified in the estimated temporal profile of
releases.

The source location is known for all the tests presented here. If
the source location is unknown, the inverse emission estimation
system can be applied by extending the control variables over
space. Adding additional dimensions to the control variables will
increase the number of the unknowns significantly. To successfully
apply the inverse system, one will need a large amount of mea-
surement data to estimate the emissions. In such applications,
better a priori estimates may be crucial. In addition, a spatial
smoothness penalty term might be needed as well. Further testing
will be performed in the future.
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